r:— DT0103
’ life.augmented Desi gn ti P

Compensating for magnetometer installation error and hard-iron
effects using accelerometer-assisted 2D calibration

By Andrea Vitali

Main components

LSM303AGR Ultra-compact high-performance eCompass module: ultra-low-power
3D accelerometer and 3D magnetometer

LSM303AH Ultra-compact high-performance eCompass module: ultra-low-power
3D accelerometer and 3D magnetometer

LIS2MDL Digital output magnetic sensor: ultra-low-power, high-performance
3-axis magnetometer

Purpose and benefits

This design tip explains how to perform 2D calibration (rotation in a plane) to compensate
for magnetometer installation error (roll and pitch) and hard-iron effects (offset). After
compensation, tilt-compensated eCompass output (yaw angle) is correct. Compensation is
done before the fusion, by subtracting the offset and de-rotating the magnetometer data.
The accelerometer can be used to verify the quality of 2D calibration and to enable the
calibration in a tilted plane (not horizontal).

Benefits:

e Compensates for misalignment of the magnetometer sensor (installation error) and
hard-iron effects (offset) by performing 2D calibration (rotation in a plane).

e Adds functionality with respect to data fusion provided by the MotionFX library
(included in X-CUBE-MEMS1) which provides 9-axis Acc+Mag+Gyro and 6-axis
Acc+Gyro fusion with accelerometer vibration rejection, gyroscope bias compensation,
and magnetometer hard-iron (offset) compensation, enabled by 3D calibration.

e Adds functionality with respect to sensor calibration provided by the MotionMC library
(included in X-CUBE-MEMS1) which compensates for hard-iron effects (offset) and
soft-iron effects (sensitivity and cross-sensitivity) but not for installation error, and
requires 3D calibration (rotation in space).

e Easy to use on every microcontroller — a reference MATLAB® implementation is
presented here which can be easily translated to C code.

Introduction

First, the ideal reference case is presented when no error occurs. Next, the consequences
of installation error and hard-iron effects are discussed. Finally, the details of the algorithm
(assumption and limitations, and performance verification) are explained.

August 2018 DT0103 Rev 1 1/12

‘,l WWw.st.com

What happens in the ideal reference case

The design tip DT0058 (Computing tilt measurement and tilt-compensated eCompass)
explains how to compute tilt (roll and pitch angles) from accelerometer data and eCompass
output (yaw angle) from magnetometer data. The eCompass output depends on the
accelerometer output: magnetometer data must be tilt-compensated before it is used.

When the accelerometer and magnetometer are perfectly aligned, tilt-compensation is
accurate and the eCompass output is correct. This can be verified by rotating the sensor
platform, with the accelerometer and magnetometer, around the vertical axis: the output of
the fusion is roll=0, pitch=0 and the correct yaw. However, in presence of any
magnetometer installation error (non-zero roll and pitch of the magnetometer with respect
to the accelerometer), the yaw will not be correct.

Figure 1. Reference orientation for input data from accelerometer and magnetometer,
and reference orientation for output data: roll, pitch, yaw angles

F & L
! Earth
Accelerometer output is G Mai.%ne:,,
positive for axis aligned with + >viy, % fiel
gravity and pointing down _, Vettq,
Yaw =0 Yaw = +90 Yaw = +180 Yaw = +270
N h X i i v Y
+ Crayy, Gray; 1 Gray + Crayjy
- "9tturIr : "ett;,t," N '-'eq;? - "&turr
Roll, Pitch, Yaw Acc (Gravity vector) Mag (Earth mag field)
Degrees G=1g=1000mg B =10..90uT = 100..900 mG
0,0, 0 0,0, +G +B Cos(i), 0, +B Sin(i)
0,0, +90 0,0, +G 0, -B Cos(i), +B Sin(i)
0, 0, +180 0,0, +G -B Cos(i), 0, +B Sin(i)
0,0, +270 0,0, +G 0, +B Cos(i), +B Sin(i)

When one rotates the sensor platform around the vertical axis, accelerometer data will be
constant and equal to [X=0, Y=0, Z=+1g], while magnetometer data will depend on the yaw
angle and equal to [X = B cos(mi) cos(yaw), Y = -B cos(mi) sin(yaw), Z = B sin(mi)]. “B” is
the magnetic field strength of the Earth, and “mi” is the inclination of the Earth’s magnetic
field vector with respect to the horizontal plane. See figure 1.

What happens in presence of installation error and hard-iron effects

August 2018

It is important to note that, when there is no installation error, magnetometer data will
describe a circle lying in the horizontal plane (magnetometer X and Y output describe a
circle, while Z output is constant). Also, if there are no hard-iron effects, the circle will be
centered around the Z-axis.

DT0103 Rev 1 2/12

www.st.com

Conversely, if the magnetometer is not perfectly aligned with the accelerometer,
magnetometer data will describe a circle lying in a tilted plane (magnetometer Z output is
not constant). Also, if the magnetometer adds a spurious offset, magnetometer data will
describe a circle which is not centered around the Z-axis. See figure 2.

Figure 2. 2D calibration in the horizontal plane (rotation axis is vertical), in presence of
installation error (left), hard-iron effects (center) or both (right)

2D calibration in the horizontal plane (vertical rotation axis)

Installation Error (Roll and Pitch) Hard-Iron effects (Offset) Both inst. error & HI effect

In figure 2, the rotation axis and accelerometer data are blue, reference error-free
magnetometer data is black, magnetometer data affected by errors is red, and error-
compensated magnetometer data is yellow. If compensation is successful, compensated
data (yellow) does match the ideal reference data (black).

Figure 3. 2D calibration in a tilted plane (rotation axis is not vertical), in presence of
installation error (left), hard-iron effects (center) or both (right)

2D calibration in a tilted plane (rotation axis not-vertical)

Installation Error (Roll and Pitch) Hard-Iron effects (Offset) Both inst. error & HI effect

8
g
&
H

August 2018 DT0103 Rev 1 3/12

"l WWW.Sst.com

In most cases, both errors (installation error and hard-iron effects) will be present. The
algorithm will first compensate for the installation error, by de-rotating magnetometer data,
so that the aforementioned circle is in the horizontal plane as expected; it will then
compensate for hard-iron effects, by subtracting the offset, so that the center of the circle is
on the Z-axis. If the rotation axis, as detected by the accelerometer, is not vertical, the
algorithm will further de-rotate the magnetometer data to the corresponding tilted circle,
where it would be in the ideal error-free case. See figure 3.

Figure 4. 2D calibration in the horizontal plane (left) and in atilted plane (right) in presence of
all errors: installation error, hard-iron effects, and soft-iron effects

Installation Error, Hard-Iron effects (unknown offsets), and Soft-Iron effects (known gains)

2D calibrationin the horizontal plane 2D calibrationin a tilted plane

D

ggggg

‘‘‘‘‘‘‘‘‘‘‘

Assumptions and algorithm limitations

The algorithm is able to complete the computation even if the data does not describe a full
circle. A full 360 degrees rotation is not needed. However, a full rotation does maximize the
quality of the computation.

Accelerometer data is essential when 2D calibration is performed on a tilted plane (rotation
axis is not vertical). The accelerometer must be already calibrated (DT0053, 6-point tumble
sensor calibration) and correctly installed (DT0076, Compensating for accelerometer
installation error: zeroing pitch and roll for a reference orientation).

The magnetometer should already be calibrated (DT0059, Ellipsoid or sphere fitting for
sensor calibration), and magnetometer data should already be compensated for soft-iron
effects (axis gains, and cross-axis gains) and hard-iron effects (axis offsets). However, the
algorithm presented here can work on imperfect data. See figure 4.

e There can be unknown hard-iron effects (axis offsets): if the Earth’s magnetic
field strength “B” and inclination “mi” are known, the algorithm presented here will
be able to compute and compensate for the offsets. Even if hard-iron effects are
already compensated, 2D calibration can still be used to refine the compensation

August 2018 DT0103 Rev 1 4/12
‘,l WWw.st.com

August 2018

(as an example, this is useful when 3D calibration is no longer possible after device
installation).

e There can be known soft-iron effects but the soft-iron matrix must be diagonal:
coefficients out of the diagonal (cross-axis gains) must be zero; and coefficients
along the diagonal (axis gains) must be known. This means that magnetometer
data must not be affected by a spurious rotation induced by axis cross-talk in the
sensor; and the algorithm presented here must be able to properly scale each axis
to reduce the non-rotated ellipsoid to a sphere.

Accelerometer data is assumed to be normalized by dividing by 1g, so that the gravity
vector as measured by the sensor is 1. Magnetometer data is also assumed to be
normalized by dividing by B, so that the modulus of the Earth’s magnetic field as measured
by the sensor is 1. The only parameter for magnetometer data is “mi” the inclination of the
Earth’s magnetic field with respect to the horizontal plane (in the example script: mi = 60
degrees).

The parameters for errors are the following: roll and pitch for the installation error
(Rerr = 20 deg, Perr = 30 deg in the example), hard-iron effects (HI = [0.1, -0.2, 0.3]), and
soft-iron effects (SI = [0.5, 1.2, 0.9]).

The parameters for 2D calibration are the following: rotation axis (rotax = [0, 0.9, 0.9], not
vertical), number of points in the simulation (N = 50), and rotation angles (0 to 315 deg, not
a full circle).

Based on the specified parameters, three vectors are computed: accelerometer data (av),
reference error-free magnetometer data (mv) and magnetometer data affected by errors
(mve). Matrix rotations are applied first, then soft-iron effects, finally hard-iron effects.

Some Gaussian noise can be added (10 mg RMS and 5 mGauss RMS in the example
script). If there is no noise, the estimated installation error and hard-iron effects will
perfectly match the parameters of the simulation.

The description of the calibration and compensation algorithm goes from the simplest to the
most complex case:

e 2D calibration in the horizontal plane (vertical rotation axis) and compensation of
magnetometer installation error (roll and pitch); this is the simplest case;
accelerometer data is not needed but nice to have.

e 2D calibration in the horizontal plane (vertical rotation axis) and compensation of
magnetometer installation error (roll and pitch) and hard-iron effects (offset);
accelerometer data is not needed but nice to have.

e 2D calibration in a tilted plane (any rotation axis, not only vertical) and
compensation of magnetometer installation error (roll and pitch) and hard-iron
effects (offset); this is the most complex case and accelerometer data is essential.

DT0103 Rev 1 5/12

Lys

This step is optional and it is needed only to verify that the rotation axis is vertical or to
enable the calibration in a tilted plane.

The rotation axis is the normal to the plane of the accelerometer data (na). The normal is
computed by the plane fitting function. Three different plane fitting functions are available,
each with different robustness and complexity trade-off: planefitls (based on Least
Square), planefiteig (based on Eigen values) and planefiteig_simple (simplified).

When the rotation axis is vertical, accelerometer data will be clustered around a single
point, [0, O, 1]. The result of the plane fitting function should be ignored in this case. In
general, if the average distance between the barycenter and the data points is less than the
RMS noise, it means that the rotation axis is vertical.

When the rotation axis is not vertical, the corresponding de-rotation matrix is computed
(aderotM) and applied to the accelerometer data (av). One can verify the quality of the
plane fitting by checking that the de-rotated accelerometer data (avc) is indeed in the
horizontal plane: the range of Z values should be much less than the range of X and Y
values.

The first step is to identify the plane corresponding to the magnetometer data by applying
one of the aforementioned plane fitting functions. As mentioned for the accelerometer data,
if the average distance of the barycenter and the data points is less than the RMS noise,
data points are clustered, and the output of the plane fitting cannot be used.

When the output of the plane fitting functions is deemed reliable, the corresponding de-
rotation matrix is computed (derotM) and applied to the magnetometer data (mv). As
explained above for the accelerometer, one can verify the quality of the plane fitting by
checking that the de-rotated magnetometer data (mvc) are indeed in the horizontal plane.

At this point, if the rotation axis is vertical, the installation error is fully compensated.

The second step is to identify the center of the circle/ellipsoid described by the de-rotated
magnetometer data (mvc). Two different 2D fitting functions are provided with different
capabilities, robustness and complexity trade-off: ellipsoid_2D _fit (for circle, ellipse or
rotated ellipse) and ellipsoid_2D_robust (rotated ellipse only).

If there is no installation error, the X and Y coordinates of the center of the circle/ellipsoid
(02) are the offset to be subtracted. If there is an installation error, or if one wants to
compute also the Z offset to be subtracted, the reference magnetic vector is needed (mref
which depends on the parameter “mi”) to compute all the coordinates of the center (03).
The three offsets to be subtracted are computed by de-rotating the center (03): this is the
estimate of the hard-iron effects (HIE).

At this point, if the rotation axis is vertical, the installation error as well as the hard-iron
effects are fully compensated.

August 2018 DT0103 Rev 1 6/12

Lys

2D calibration in a tilted plane, compensation of installation error and hard-iron effects

The third and final step is needed only if the rotation axis is not vertical. In this case the
magnetometer data should be further de-rotated to be in the correct plane (the same plane
as the accelerometer data).

The additional de-rotation will introduce a spurious yaw rotation which must be identified
and compensated. The Newton method is utilized to search for the correction factor
(Ycorr). The method has been modified for this specific application in order to complete the
computation even in case of stationary points and to reject invalid solutions.

At this point, even if the rotation axis is not vertical, the installation error as well as hard-
iron effects are fully compensated.

Reference MATLAB code

Euler, quaternion and rotation matrix conversion functions

function [euler] = acc2euler(acc)
x=acc(:,1); y=acc(:,2); z=acc(:,3);
r=atan2(y,z);
p=atan(-x/(y-*sin(r) + z.*cos(r)));
y=0;
euler=[r p y];

end

function M = euler2rotM(euler)
% North-East-Down reference frame
% Roll(phi) Pitch(theta) Yaw(psi), angles in radians
phi=euler(1); theta=euler(2); psi=euler(3);
mll= cos(theta)*cos(psi);
ml2= cos(theta)*sin(psi);
ml3=-sin(theta);
m21=sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi);
m22=sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi);
m23=sin(phi)*cos(theta);
m31l=cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi);
m32=cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi);
m33=cos(phi)*cos(theta);
M = [m11,m12,m13; m21,m22,m23; m31,m32,m33];

end

function euler = rotM2euler(M)

m11=M(1,1); m12=M(1,2); m13=M(1,3);

m21=M(2,1); m22=M(2,2); m23=M(2,3);

m31=M(3,1); m32=M(3,2); m33=M(3,3);

m13=min(+1,m13); ml3=max(-1,m13);

theta=-asin(m13); % alternative value: pi-theta

costh=cos(theta);

if abs(costh)<0.001, % singularity
% psi-phi = atan2(+m21,+m31) or atan2(-m32,+m22) at North theta=+pi/2
% psi+phi = atan2(-m21,-m31) or atan2(-m32,+m22) at South theta=-pi/2
sgnth=sign(theta); phi=0; % phi can be anything in -pi..+pi
Y%psil=sgnth*(phi-atan2(m21*sgnth,m31*sgnth));
Y%psi2=sgnth*(phi-atan2(-m32,+m22));
psi=-sgnth*atan2(-m32,+m22); % if phi~=0 use one of the formulas above

else
psi=atan2(ml2/costh,ml1l/costh);
phi=atan2(m23/costh,m33/costh);

end;

euler=[phi theta psi]; % roll pitch yaw

end

function M = quat2rotM(Q)
qw=Q(1); ax=Q(2); ay=Q(3); qz=Q(4);
qw2=qw*qw; gx2=gx*gx; qy2=qy*qy; gz2=q9z*qz;
n=1/(qw2+qx2+qy2+qz2);
mll=(gx2 -qy2 -qz2 +qw2)*n;
m22=(-gx2 +qy2 -qz2 +qw2)*n;
m33=(-gx2 -qy2 +qz2 +qw2)*n;
tl=gx*qy; t2=qz*qw; ml2=2*(tl+t2)*n; m21=2*(tl-t2)*n;
tl=gx*qz; t2=qy*qw; ml3=2*(tl-t2)*n; m31=2*(tl+t2)*n;
tl=qy*qz; t2=qgx*qw; m23=2*(tl+t2)*n; m32=2*(tl-t2)*n;
M=[m11 m12 m13; m21 m22 m23;m31 m32 m33];

end

August 2018 DT0103 Rev 1 7/12

"l WWW.Sst.com

3D plane fitt

ing functions

function [n,p] = planefitls(xyz) % xyz: Nx3 matrix, each line is a data point

% least square solution, minimize distance along main axis

p=mean(xyz,1); % p point in the plane

x=xyz(z,1)-p(1); y=xyz(:,2)-p(2); z=xyz(:,3)-p(3);

xx=sum(x.*x); yy=sum(y.*y); zz=sum(z.*z);

xy=sum(x.*y); xz=sum(x.*z); yz=sum(y.*z);

Dx=yy*zz-yz*yz; Dy=xx*zz-xz*xz; Dz=xx*yy-xy*xy; % use largest
D=abs(Dx); flag=0;

if abs(Dy)>D, D=abs(Dy); flag=1; end;

if abs(Dz)>D, D=abs(Dz); flag=2; end;

if D==0, n=[0,0,0]; return; end;

switch flag

case 0, a=1; b=(xz*yz-xy*zz)/Dx; c=(xy*yz-xz*yy)/Dx;
case 1, a=(yz*xz-xy*zz)/Dy ; b=1; c=(Xy*xz-yz*xx)/Dy;
case 2, a=(yz*xy-xz*yy)/Dz; b=(xz*xy-yz*xx)/Dz; c=1;

end

n=[a,b,c]./sqrt(a*a+b*b+c*c); % normal to plane

end

function [n,p,B] = planefiteig(xyz) % xyz: Nx3 matrix, each line is a data point
% least square solution, minimize orthonormal distance
p=mean(xyz,1); % point in the plane
xyz(z,1)=xyz(:,1)-p(1); xyz(:,2)=xyz(:,2)-p(2); xyz(:,3)=xyz(:,3)-p(3);
[eigvect,eigval]=eig(xyz® * xyz); % eigen vectors of a 3x3 matrix
igvect(:,1)"; % normal to plane
B=eigvect(:,2:end)"; % rows are an orthonormal basis for the plane
end

function [n,p,B] = planefiteig_simple(xyz) % xyz: Nx3 matrix, each line is a data point
% least square solution, minimize orthonormal distance
p=mean(xyz,1); % point in the plane
x=xyz(:,1)-p(1); y=xyz(:,2)-p(2); z=xyz(:,3)-p(3);
% XYZ® * XYZ, 3x3 matrix

% X1 x2 ... * x1 yl zl = sum(x2) sum(xy) sum(xz)
% yly2 ... X2 y2 z2 sum(xy) sum(yy) sum(yz)
% ozl z2 ... - sum(xz) sum(yz) sum(z2)

xx=sum(x.*x); yy=sum(y.*y); zz=sum(z.*z);
xy=sum(x.*y); xz=sum(x.*z); yz=sum(y.*z);
[eigvect,eigval]l=eig([xx xy xz; Xy yy yz; xz yz zz]); % eigen vectors of a 3x3 matrix
n=eigvect(:,1)"; % normal to plane
B=eigvect(:,2:end)"; % rows are an orthonormal basis for the plane
end

2D circle/ellipse/rotated ellipse fitting functions

function [ofs,gain,rotM] = ellipsoid_2D_fit(XY,varargin)

% Fit an (non)rotated ellipsoid or sphere to a set of xy data points
% XY: N(rows) x 3(cols), matrix of N data points (X,y)

% optional flag f, default to O (fitting of rotated ellipsoid)
x=XY(:,1); y=XY(:,2); if nargin>1, f=varargin{l}; else f=0; end;

if f==0, D=[x.*x, y.*y, 2*x.*y, 2*x,2*y]; % any axes (rotated ellipsoid)
elseif f==1, D=[x.*x, y.*y, 2*x,2*y]; % XYZ axes (non-rotated ellipsoid)
elseif f==2, D=[x.*x+y.*y, 2*x,2*y]; % and radius x=y (circle)

end;

v = (D"*D)\(D"*ones(length(x),1)); % least square Fitting

if f==0, % rotated ellipsoid
A=TLv(@ v®) v(4); v(3) v(2) v(5); v(4) v(5) -11;
ofs=-A(1:2,1:2)\[v(4);v(5)]; % offset is center of ellipsoid
Tmtx=eye(3); Tmtx(3,1:2)=0fs"; AT=Tmtx*A*Tmtx"; % ellipsoid translated to (0,0,0)
[rotM ev]=eig(AT(1:2,1:2)/-AT(3,3)); % eigenvectors (rotation) and eigenvalues (gain)
gain=sqrt(l./diag(ev)); % gain is radius of the ellipsoid

else % non-rotated ellipsoid
if f==1, v=[v(@) v(2 0 v(3® v(® 1;
elseif f==2, v = [v(1) v(1) 0 Vv(2) v(3) 1; % sphere
end;
ofs=-(v(1:2).\v(4:5))"; % offset is center of ellipsoid
rotM=eye(2); % eigenvectors (rotation), identity = no rotation
g=1+(v(4)"2/v(1)+v(5)"2/v(2));
gain=(sqrt(g-/v(1:2)))"; % find radii of the ellipsoid (scale)

end

function [ofs,gain,rotM] = ellipsoid_2D_fit_robust(XY)
% Fit a rotated 2D ellipsoid to a set of xy data points
% XY: N(rows) x 2(cols), matrix of N data points (X,y)
Xx=XY(:,1); y=XY(:,2);

% translate to (0,0), subtract centroid, may increase accuracy
mx=mean(x); X=X-mx;
my=mean(y); y=y-my;

D1 = [x.~2, x.*y, y.~2]; D2 = [x, y, ones(size(x))];
S1 = D1"*D1; S2 = D1"*D2; S3 = D2"*D2;

T = -inv(83)*S2"; M = S1+S2*T;

M = [M(3,:).72; -M(2,:); M(1,:)./2];

[e.eval] = eig(M);

c = 4*e(1,:)-*e(3,:)-e(2,:).72;
vl = e(:,find(c>0));

v = [vl; T*v1];

August 2018 DT0103 Rev 1 8/12
‘,’ WWw.st.com

% translate back to centroid, skip if centroid is not subtracted
v4 = v(4)-2*v(1)*mx-v(2)*my;

v5 v(5)-2*v(3)*my-v(2)*mx;

= v(6)+v(1)*mxA2+v(3)*myA2+v(2)*mx*my v(4)*mx-v(5)*my;
v(4)—v4 v(5)=v5; v(6)=v6;

ofs =[-2*v(1),-v(2);-v(2),-2*v(AINLV(4):v(D)];

% here we use eig(Q)
A=[2*v(1), Vv(2), v(4);

v(2),2*v(3), Vv(5); .-

v(4), v(5), 2*v(6)]/v(6)
Tmtx=eye(3); Tmtx(3,1:2)=0fs"; AT=TmEx*A*Tmtx";
[rot™ ev]:eig(AT(1:2,1:2)/—AT(3,3));
gain=sqrt(l./diag(ev));

% alternative: here we do not use eig()
%T=A(1:2,1:2)/-AT(3,3); trT=T(1,1)+T(2,2); detT=T(1,1)*T(2,2)-T(1,2)*T(2,1);
Y%evl=(trT+sqrt(trT"2-4*detT))/2; ev2=(trT-sqrt(trT"2-4*detT))/2;
%gain=sqrt(l./[ev2;evl]);
%TT=T-eye(2)*evl; evectl=TT(1,:)/sqrt(TT(1,1)"2+TT(1,2)"2);
% evectl=TT(2,:)/sqrt(TT(2,1)"2+TT(2,2)"2);
UTT=T-eye(2)*ev2; evect2=TT(1,:)/sqrt(TT(1,1)"2+TT(1,2)"2);
% evect2=TT(2,:)/sqrt(TT(2,1)"2+TT(2,2)"2);
Y%rotM=[evectl” ,evect2"];

end

Auxiliary scripts
test_Ycorr.m

%---- compute only the coefficients of interest in M

yawrotM = euler2rotM([O O -Ycorr]); % this has a simplified structure
% M = derotM*yawrotM*aderotM*; % actually only 1st row is needed

% RPY = rotM2euler(M); % goal is to make the yaw, RPY(3), equal to O

S

% see euler2rotM([0 0 -y]) and definition of M above:
% cy = cos(-y); sy = sin(-y); % used to compute M coefficients

% M1l = cy*(all*mll+al2*ml2) + sy*(al2*mll-all*ml2) + al3*ml3;
% M12 = cy*(a2l*mll+a22*ml2) + sy*(a22*mll-a21*ml2) + a23*ml3;
% M13 = cy*(a31*mll+a32*ml2) + sy*(a32*mll-a31*ml2) + a33*ml3;

% see rotM2euler():
% pitch theta = -asin(M13); % pitch is needed to check yaw
% yaw psi atan2(M12/cos(theta) ,M11/cos(theta)); % yaw must be O

% roll phi atan2(M23/cos(theta) ,M33/cos(theta)); % roll is unnecessary
% for yaw (psi) to be 0O:
% 1) M12 must be 0: used with Newtown method to find roots

% 2) Mll*cos(asin(M13)) must be >0: used to check root validity

mll=derotM(1,1); ml2=derotM(1,2); ml3=derotM(1,3);
all=aderotM(1,1); al2=aderotM(1,2); al3=aderotM(1,3);
a2l=aderotM(2,1); a22=aderotM(2,2); a23=aderotM(2,3);
a3l=aderotM(3,1); a32=aderotM(3,2); a33=aderotM(3,3);

%---- Newton method
done=0; maxiter=20; iter=1;
cl=(a21*mll+a22*m12); c2=(a22*mll-a21*m12); c3=a23*m13; y=0; % init
while ~done,
y = mod(y,2*pi); if (y>pi), y=y-2*pi; end;

cy = cos(y); sy = sin(-y);
f = cy*cl + sy*c2 + c3; % M12 function
fd = sy*cl - cy*c2; % M12® function derivative

if abs(fd)<le-2, y=y+pi/2; continue; end; % get out of stationary point
yt =y - f/fd; % new root estimate
if abs(y-yt)<le-6, % root candidate: check validity
M1l = cy*(all*mll+al2*ml2) + sy*(al2*mll-all*ml2) + al3*mil3;
M13 = cy*(a3l*mll+a32*ml2) + sy*(a32*mll-a31*ml2) + a33*mil3;
if Mll1*cos(asin(M13))<0, y=y+pi; continue; end; % jump to other solution
done=1;
end;
y=yt; iter=iter+l; if iter>maxiter, break; end;
end;
Ycorr=y;

test _plot.

hold on; grid on; zoom on; colormap(gray); % NED -> plot(x,-y,-z)

plot3(av(:,1), -av(:,2), -av(:,3),"d-");

plot3(mv(:,1), -mv(:,2), -mv(:,3), k.-");
plot3(mve(:,1),-mve(:,2),-mve(:,3), *-");
plot3(mve(:,1),-mvc(:,2),-mvc(:,3),"0-");

surf(Xs,Ys,Zs, “FaceAlpha®,0.1, EdgeCoIor ,[0.1 0.1 0.1], "EdgeAlpha®,0.1);
quiver3(0,0,0,na(1), —na(2) -na(3),"b"); % rotax by acc data
%quiver3(0,0,0,nme(1),-nme(2),-nme(3),"r");

legend("acc®,"mag ref”,"mag err”,"mag comp”); xlabel("x"); ylabel("y"); zlabel("z");
axis([-1im +1im -lim +01im -lim +01im]); axis equal;

August 2018 DT0103 Rev 1 9/12

‘,’ WWW.Sst.com

Main script: algorithm for 2D magnetometer calibration

test.m

mi = 60*pi/180; % mag field vector inclination w.r.t horizontal plane
mref = [cos(mi);0;sin(mi)]; % mag field reference vector

aref = [0;0;1]; % acc gravity reference vector

Rerr = 0; Perr = 0; % default: no installation error

Rerr = 20; % mag pitch installation error (degrees)

Perr = 30; % mag roll installation error (degrees)

RPYerr=[Rerr,Perr,0]*pi/180; % mag installation error, Roll Pitch (Yaw=0)

rotMerr = euler2rotM(RPYerr); % corresponding rotation matrix, derotM should match this

%RPYerr2 = rotM2euler(rotMerr)); % reverse computation

HI =

rotax
rotax
rotax

[0,0,0]; SI = [1,1,1]; % default: no measurement errors
[0.1,-0.2,0.3]; % Hard lron effects (offset), OK if non-zero and unknown
0.5, 1.2, 0.9]; % Soft Iron effects (sensitivity), must be unity or known

=TI

[0,0,

1]; % default: vertical rotation axis

[0,0.9,0.9]; % vector corresponding to the rotation axis
rotax./sqrt(sum(rotax.*rotax)); % normalization

N = 50; % points in the simulation

linspace(0, (360-45)/180*pi,N); % vector of rotation angles
zeros(N,3); % vector of accelerometer data XYZ

zeros(N,3); % vector of magnetometer data XYZ

mve = mv; % mag data with installation and measurement error

rv
av
mv

% simulation of calibration with rotation around rotax

for i

1 -

r2 = rv(i)/2; % current rotation angle

rot!

M

= quat2rotM([cos(r2), sin(r2).*rotax]); % rotation matrix
rotM*aref; % acc

av(i,:) =
mv(i,:) = rotM*mref; % mag without installation error

mve(i,:)
mve(i,:)

end;

% add some

aRMS
aRMS
mRMS
av
mv
mve

(rotMerr*rotM)*mref; % mag with installation error
(mve(i,:).*S1)+HI; % and measurement error (HI/SI)

Gaussian noise

0; mRMS = 0; % default: O RMS noise
0.010/1.0; % 10mg RMS noise / 1g gravity vector

0.005/0.5; % 5mGa RMS noise / 500mGa earth mag field vector

av + randn(size(av))*aRMS;
mv + randn(size(mv))*mRMS;
mve + randn(size(mve))*mRMS;

% estimation of rotation axis, should be vertical
avm = ones(N,1)*mean(av,1); % convenient matrix from the center of data points

avmd = sum(sgrt(sum((av-avm).n2,2)))/N; % planefit quality ~ avg distance w.r.t. center

[na,pa] = planefitls(av); % planefit[Is/eig/eig_simple]
if dot(na,[0,0,1])<0, na=-na; end; % choose min rotation w.r.t. vertical
if avmd<=(6*aRMS), na=[0,0,1]; end; % cluster of points indicates rotax is vertical

RPYrotax = acc2euler(na); % when rotax is not vertical Yaw does matter but it is not known
%RPYrotax(3) = Ycorr; % correction yaw is found in the final step

aderotM = euler2rotM(RPYrotax); % identity if rotax is vertical
av*aderotM; % derotate acc data to see if it is in the horiz plane
avcX=max(avc(:,1))-min(avc(:,1)); % check quality of derotation to horiz plane
avcY=max(avc(:,2))-min(avc(:,2)); % avcZ must be much less than avcX,avcY

avc =

avcZ=max(avc(:,3))-min(avc(:,3)); % avcZ ~ 0 if there is no noise

% estimation and compensation of inst.err, Sl must be unity or known

mvem

Y%mvc = mve*derotM; % compensation of inst.err only, when SI

mvc =

mveZ=max(mvc(:,3))-min(mvc(:,3)); % mvcZ ~ O if there is no noise

ones(N,1)*mean(mve,1l); % convenient matrix from the center of data points
mvemd = sum(sqrt(sum((mve-mvem).”~2,2)))/N; % sum of distances w.r.t. center
[nme,pme] = planefitls(mve); % planefit[lIs/eig/eig_simple]
if dot(nme,[0,0,1])<0, nme=-nme; end; % choose min rotation w.r.t. vertical
RPYerrE = acc2euler(nme.*S1); % this is the estimated installation error
derotM = euler2rotM(RPYerrE); % corresponding derotation matrix
Slc = ones(N,1)*(1./S1); % convenient matrix for Sl compensation

is unity

((mve.*SlIc)*derotM); % compensation of Sl and inst.err, vert rotax, step (a)
mveX=max(mvc(:,1))-min(mvc(:,1)); % check quality of derotation to horiz plane
mvcY=max(mvc(:,2))-min(mvc(:,2)); % mvcZ must be much less than mvcX,mvcY

% estimation and compensation of HI, to be done after inst.err compensation

[02,92,r0tM2] = e
%[02,92,rotM2] = e
aderotM® * mref; % compensate for non-vertical rotation axis,

mref2
o3

HIE
Hlc
mve

ipsoid_2D_fit(mvc,0); % 2=circle, l=ellipse, O=rotated
ipsoid_2Dfit_robust(mvc); % alternative for rotated ellipse

ipse

inv(rotM)=rotm*

[02;mean(mvc(:,3))-mref2(3)]; % this is the point corresponding to (0,0,0)
(derotM*o3) " .*Sl1; % this is the estimated HI, SI must unity or known
(ones(N,1)*HIE); % convenient matrix for HI compensation

((mve-HIc).*SlIc)*derotM; % compensation of HI/SI and inst.err, vert rotax, opt step (b)

% finalize compensation, to be done after (a) or (a)+(b) when rotax is not vertical

test_Ycorr; % search for Ycorr, to be done when rotax is not vertical
yawrotM = euler2rotM([0 O -Ycorr]); % this will make RPYerr_final(3)=0

derotM = derotM * yawrotM * aderotM®; % compensate for non-vertical rotation axis
RPYerrkE = rotM2euler(derotM); % recompute installation error
((mve-HIc).*SIc)*derotM; % compensation of HI/SI and inst.err, any rotax

mvc =

% plot section: 3D and 2D views
[XS,YS,ZS]=sphere(20); % reference sphere for XYZ data plot

August 2018 DT0103 Rev 1 10/12
"I WWw.st.com

lim = 1.3; % range of 3D plot, used in data plot

figure;

subplot(2,2,1); test_plot; view(210,30); title(3D view");
subplot(2,2,2); test_plot; view(0,0); title("XZ view");
subplot(2,2,3); test_plot; view(90,0); title("YZ view");
subplot(2,2,4); test_plot; view(0,90); title("XY view");

% print section

fprintf("reliability of acc data for planefit: %.2g >= 6*RMS: %.2g, ratio

%.209\n" ,avmd, 6*aRMS ,avmd/ (6*aRMS)) ;

fprintf("quality of rotax estim. from acc derotation: Zdiff %.2g << Xdiff,Ydiff %.2g %.2g, ratio
%.2g %.29\n",avcZ,avcX,avcY,avcX/avcZ,avcY/avcZ);

fprintf(“rotation axis o %.3F %.3F %.3F\n",rotax(l),rotax(2),rotax(3));
fprintf("rotation axis estim. from acc: %.3f %.3f %.3f\n",na(l),na(2),na(3));

fprintf("\n");

fprintf("reliability of mag data for planefit: %.2g >= 6*RMS: %.2g, ratio

%.2g\n" ,mvemd, 6*mRMS ,mvemd/ (6*mRMS)) ;

fprintf("quality of inst.err estim. from mag derotation: Zdiff %.2g << Xdiff,Ydiff %.2g %.2g,
ratio %.2g %.2g\n",mvcZ,mvcX,mvcY,mvcX/mvcZ,mvcY/mvcZ);

fprintf("yaw derotation correction (function of mag and acc planes): %.4f\n",Ycorr);
fprintf(Cinst.err true (RPY in rad) %.4f %.4f %.4F\n",RPYerr(1),RPYerr(2),RPYerr(3));
fprintf("inst.err estimated (in rad) %.4f %.4Ff %.4f\n" ,RPYerrE(1),RPYerrE(2),RPYerrE(3));
fprintf("\n");

fprintf("Hard lron offset error %.4F %.4F %.4F\n",HI(1),HI(2),HI(3));

fprintf("Hard Iron estimated %.AF %.4F %.4F\n" ,HIE(1),HIE(2),HIE(3));
fprintf("Soft lIron gain error %.4Ff %.4f %.4f\n",S1(1),S1(2),S1(3));

Support material

Related design support material

Software expansion, X-CUBE-MEMS1, Sensor and motion algorithm software expansion for
STM32Cube

Software function pack, FP-SNS-MOTENV1, STM32 ODE function pack for 10T node with BLE
connectivity and environmental and motion sensors

Software function pack, FP-SNS-ALLMEMS1, STM32 ODE function pack for IoT node with BLE
connectivity, digital microphone, environmental and motion sensors

Evaluation kit, STEVAL-STLKTO01V1, SensorTile development kit

Documentation

Design Tip, DT0053, 6-point tumble sensor calibration

Design Tip, DT0058, Compulting tilt measurement and tilt-compensated eCompass

Design Tip, DT0059, Ellipsoid or sphere fitting for sensor calibration

Design Tip, DT0060, Exploiting the gyroscope to update tile measure and eCompass

Design Tip, DT0076, Compensating for accelerometer installation error: zeroing pitch and roll for a
reference orientation

Revision history

Date Version Changes

28-Aug-2018 1 Initial release

August 2018 DT0103 Rev 1 11/12

"l WWW.Sst.com

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”") reserve the right to make changes, corrections, enhancements,
modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should
obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and
conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for
application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for
such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics — All rights reserved

August 2018 DT0103 Rev 1 12/12

‘,l WWw.st.com

	Purpose and benefits
	Introduction
	What happens in the ideal reference case
	What happens in presence of installation error and hard-iron effects
	Generation of simulated data and performance verification

	Description of 2D calibration and compensation
	Estimation of rotation axis
	2D calibration in the horizontal plane, compensation of installation error
	2D calibration in the horizontal plane, compensation of installation error and hard-iron effects
	2D calibration in a tilted plane, compensation of installation error and hard-iron effects

	Reference MATLAB code
	Euler, quaternion and rotation matrix conversion functions
	3D plane fitting functions
	2D circle/ellipse/rotated ellipse fitting functions
	Auxiliary scripts
	Main script: algorithm for 2D magnetometer calibration

	Support material
	Revision history

