
       
 

August 2018 DT0103 Rev 1 1/12 
 

 www.st.com 
 

 

DT0103  
Design tip 

Compensating for magnetometer installation error and hard-iron 
effects using accelerometer-assisted 2D calibration 

    By Andrea Vitali 

 

Main components 

LSM303AGR Ultra-compact high-performance eCompass module: ultra-low-power 
3D accelerometer and 3D magnetometer 

LSM303AH  Ultra-compact high-performance eCompass module: ultra-low-power 
3D accelerometer and 3D magnetometer 

LIS2MDL  Digital output magnetic sensor: ultra-low-power, high-performance  
3-axis magnetometer 

Purpose and benefits 
This design tip explains how to perform 2D calibration (rotation in a plane) to compensate 
for magnetometer installation error (roll and pitch) and hard-iron effects (offset). After 
compensation, tilt-compensated eCompass output (yaw angle) is correct. Compensation is 
done before the fusion, by subtracting the offset and de-rotating the magnetometer data. 
The accelerometer can be used to verify the quality of 2D calibration and to enable the 
calibration in a tilted plane (not horizontal). 

Benefits: 

• Compensates for misalignment of the magnetometer sensor (installation error) and 
hard-iron effects (offset) by performing 2D calibration (rotation in a plane). 

• Adds functionality with respect to data fusion provided by the MotionFX library 
(included in X-CUBE-MEMS1) which provides 9-axis Acc+Mag+Gyro and 6-axis 
Acc+Gyro fusion with accelerometer vibration rejection, gyroscope bias compensation, 
and magnetometer hard-iron (offset) compensation, enabled by 3D calibration. 

• Adds functionality with respect to sensor calibration provided by the MotionMC library 
(included in X-CUBE-MEMS1) which compensates for hard-iron effects (offset) and 
soft-iron effects (sensitivity and cross-sensitivity) but not for installation error, and 
requires 3D calibration (rotation in space). 

• Easy to use on every microcontroller – a reference MATLAB© implementation is 
presented here which can be easily translated to C code. 

Introduction 
First, the ideal reference case is presented when no error occurs. Next, the consequences 
of installation error and hard-iron effects are discussed. Finally, the details of the algorithm 
(assumption and limitations, and performance verification) are explained. 



       
 

August 2018 DT0103 Rev 1 2/12 
 

 www.st.com 
 

What happens in the ideal reference case 

The design tip DT0058 (Computing tilt measurement and tilt-compensated eCompass) 
explains how to compute tilt (roll and pitch angles) from accelerometer data and eCompass 
output (yaw angle) from magnetometer data. The eCompass output depends on the 
accelerometer output: magnetometer data must be tilt-compensated before it is used.  

When the accelerometer and magnetometer are perfectly aligned, tilt-compensation is 
accurate and the eCompass output is correct. This can be verified by rotating the sensor 
platform, with the accelerometer and magnetometer, around the vertical axis: the output of 
the fusion is roll=0, pitch=0 and the correct yaw. However, in presence of any 
magnetometer installation error (non-zero roll and pitch of the magnetometer with respect 
to the accelerometer), the yaw will not be correct. 

Figure 1. Reference orientation for input data from accelerometer and magnetometer,  
and reference orientation for output data: roll, pitch, yaw angles 

 

When one rotates the sensor platform around the vertical axis, accelerometer data will be 
constant and equal to [X=0, Y=0, Z=+1g], while magnetometer data will depend on the yaw 
angle and equal to [X = B cos(mi) cos(yaw), Y = -B cos(mi) sin(yaw), Z = B sin(mi)]. “B” is 
the magnetic field strength of the Earth, and “mi” is the inclination of the Earth’s magnetic 
field vector with respect to the horizontal plane. See figure 1.  

What happens in presence of installation error and hard-iron effects 

It is important to note that, when there is no installation error, magnetometer data will 
describe a circle lying in the horizontal plane (magnetometer X and Y output describe a 
circle, while Z output is constant). Also, if there are no hard-iron effects, the circle will be 
centered around the Z-axis. 

 

Roll, Pitch, Yaw
Degrees

Acc (Gravity vector)
G = 1g = 1000mg

Mag (Earth mag field)
B = 10..90uT = 100..900 mG

0, 0,       0 0, 0, +G +B Cos(i),         0, +B Sin(i)

0, 0,   +90 0, 0, +G 0, -B Cos(i), +B Sin(i)

0, 0, +180 0, 0, +G -B Cos(i), 0, +B Sin(i)

0, 0, +270 0, 0, +G 0, +B Cos(i), +B Sin(i)

Accelerometer output is 
positive for axis aligned with 

gravity and pointing down

Yaw = +180Yaw = +90 Yaw = +270Yaw = 0



       
 

August 2018 DT0103 Rev 1 3/12 
 

 www.st.com 
 

Conversely, if the magnetometer is not perfectly aligned with the accelerometer, 
magnetometer data will describe a circle lying in a tilted plane (magnetometer Z output is 
not constant). Also, if the magnetometer adds a spurious offset, magnetometer data will 
describe a circle which is not centered around the Z-axis. See figure 2. 

Figure 2. 2D calibration in the horizontal plane (rotation axis is vertical), in presence of 
installation error (left), hard-iron effects (center) or both (right) 

 

In figure 2, the rotation axis and accelerometer data are blue, reference error-free 
magnetometer data is black, magnetometer data affected by errors is red, and error-
compensated magnetometer data is yellow. If compensation is successful, compensated 
data (yellow) does match the ideal reference data (black). 

Figure 3. 2D calibration in a tilted plane (rotation axis is not vertical), in presence of 
installation error (left), hard-iron effects (center) or both (right) 

  

 

-1

y

0

1

3D view

-1x

0
1

0.5

1

-1

0

-0.5

z

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

XZ view

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

y

-1 -0.5 0 0.5 1

YZ view acc

mag ref

mag err

mag comp

x
-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

XY view

acc

mag ref

mag err

mag comp

-1

y

0

1

3D view

-1x

0
1

-1

-0.5

0.5

1

0z

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

XZ view

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

y

-1 -0.5 0 0.5 1

YZ view acc

mag ref

mag err

mag comp

x
-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

XY view

acc

mag ref

mag err

mag comp

-1

y

0

1

3D view

-1x

0
1

-0.5

0

0.5

1

-1

z

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

XZ view

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

y

-1 -0.5 0 0.5 1

YZ view acc

mag ref

mag err

mag comp

x
-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

XY view

acc

mag ref

mag err

mag comp

Installation Error (Roll and Pitch) Hard-Iron effects (Offset) Both inst. error & HI effect

2D calibration in a tilted plane (rotation axis not-vertical)

-1

y

0

1

3D view

-1x

0
1

1

-1

-0.5

0.5

0z

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

XZ view

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

y

-1 -0.5 0 0.5 1

YZ view acc

mag ref

mag err

mag comp

x
-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

XY view

acc

mag ref

mag err

mag comp

-1

y

0

1

3D view

-1x

0
1

0.5

-1

-0.5

0

1

z

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

XZ view

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

y

-1 -0.5 0 0.5 1

YZ view acc

mag ref

mag err

mag comp

x
-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

XY view

acc

mag ref

mag err

mag comp

Installation Error (Roll and Pitch) Hard-Iron effects (Offset) Both inst. error & HI effect

2D calibration in the horizontal plane (vertical rotation axis)

-1

y

0

1

3D view

-1x

0
1

0.5

-1

-0.5

0

1

z

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

XZ view

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

y

-1 -0.5 0 0.5 1

YZ view acc

mag ref

mag err

mag comp

x
-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

XY view

acc

mag ref

mag err

mag comp



       
 

August 2018 DT0103 Rev 1 4/12 
 

 www.st.com 
 

 

In most cases, both errors (installation error and hard-iron effects) will be present. The 
algorithm will first compensate for the installation error, by de-rotating magnetometer data, 
so that the aforementioned circle is in the horizontal plane as expected; it will then 
compensate for hard-iron effects, by subtracting the offset, so that the center of the circle is 
on the Z-axis. If the rotation axis, as detected by the accelerometer, is not vertical, the 
algorithm will further de-rotate the magnetometer data to the corresponding tilted circle, 
where it would be in the ideal error-free case. See figure 3. 

Figure 4. 2D calibration in the horizontal plane (left) and in a tilted plane (right) in presence of 
all errors: installation error, hard-iron effects, and soft-iron effects 

 

Assumptions and algorithm limitations 

The algorithm is able to complete the computation even if the data does not describe a full 
circle. A full 360 degrees rotation is not needed. However, a full rotation does maximize the 
quality of the computation. 

Accelerometer data is essential when 2D calibration is performed on a tilted plane (rotation 
axis is not vertical). The accelerometer must be already calibrated (DT0053, 6-point tumble 
sensor calibration) and correctly installed (DT0076, Compensating for accelerometer 
installation error: zeroing pitch and roll for a reference orientation). 

The magnetometer should already be calibrated (DT0059, Ellipsoid or sphere fitting for 
sensor calibration), and magnetometer data should already be compensated for soft-iron 
effects (axis gains, and cross-axis gains) and hard-iron effects (axis offsets). However, the 
algorithm presented here can work on imperfect data. See figure 4. 

• There can be unknown hard-iron effects (axis offsets): if the Earth’s magnetic 
field strength “B” and inclination “mi” are known, the algorithm presented here will 
be able to compute and compensate for the offsets. Even if hard-iron effects are 
already compensated, 2D calibration can still be used to refine the compensation 

 

-1

y

0

1

3D view

-1x

0

1

-1

-0.5

0

0.5

1

z

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

XZ view

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

y

-1 -0.5 0 0.5 1

YZ view
acc

mag ref

mag err

mag comp

x
-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

XY view

acc

mag ref

mag err

mag comp

-1

y

0

1

3D view

-1x

0

1

-0.5

0

0.5

1

-1

z

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

XZ view

acc

mag ref

mag err

mag comp

z

-1

-0.5

0

0.5

1

y

-1 -0.5 0 0.5 1

YZ view
acc

mag ref

mag err

mag comp

x
-1 -0.5 0 0.5 1

y

-1

-0.5

0

0.5

1

XY view

acc

mag ref

mag err

mag comp

Installation Error, Hard-Iron effects (unknown offsets), and Soft-Iron effects (known gains)

2D calibration in the horizontal plane 2D calibration in a tilted plane



       
 

August 2018 DT0103 Rev 1 5/12 
 

 www.st.com 
 

(as an example, this is useful when 3D calibration is no longer possible after device 
installation). 

• There can be known soft-iron effects but the soft-iron matrix must be diagonal: 
coefficients out of the diagonal (cross-axis gains) must be zero; and coefficients 
along the diagonal (axis gains) must be known. This means that magnetometer 
data must not be affected by a spurious rotation induced by axis cross-talk in the 
sensor; and the algorithm presented here must be able to properly scale each axis 
to reduce the non-rotated ellipsoid to a sphere. 

Generation of simulated data and performance verification 

Accelerometer data is assumed to be normalized by dividing by 1g, so that the gravity 
vector as measured by the sensor is 1. Magnetometer data is also assumed to be 
normalized by dividing by B, so that the modulus of the Earth’s magnetic field as measured 
by the sensor is 1. The only parameter for magnetometer data is “mi” the inclination of the 
Earth’s magnetic field with respect to the horizontal plane (in the example script: mi = 60 
degrees). 

The parameters for errors are the following: roll and pitch for the installation error  
(Rerr = 20 deg, Perr = 30 deg in the example), hard-iron effects (HI = [0.1, -0.2, 0.3]), and 
soft-iron effects (SI = [0.5, 1.2, 0.9]). 

The parameters for 2D calibration are the following: rotation axis (rotax = [0, 0.9, 0.9], not 
vertical), number of points in the simulation (N = 50), and rotation angles (0 to 315 deg, not 
a full circle). 

Based on the specified parameters, three vectors are computed: accelerometer data (av), 
reference error-free magnetometer data (mv) and magnetometer data affected by errors 
(mve). Matrix rotations are applied first, then soft-iron effects, finally hard-iron effects. 

Some Gaussian noise can be added (10 mg RMS and 5 mGauss RMS in the example 
script). If there is no noise, the estimated installation error and hard-iron effects will 
perfectly match the parameters of the simulation. 

Description of 2D calibration and compensation 
The description of the calibration and compensation algorithm goes from the simplest to the 
most complex case: 

• 2D calibration in the horizontal plane (vertical rotation axis) and compensation of 
magnetometer installation error (roll and pitch); this is the simplest case; 
accelerometer data is not needed but nice to have. 

• 2D calibration in the horizontal plane (vertical rotation axis) and compensation of 
magnetometer installation error (roll and pitch) and hard-iron effects (offset); 
accelerometer data is not needed but nice to have. 

• 2D calibration in a tilted plane (any rotation axis, not only vertical) and 
compensation of magnetometer installation error (roll and pitch) and hard-iron 
effects (offset); this is the most complex case and accelerometer data is essential. 



       
 

August 2018 DT0103 Rev 1 6/12 
 

 www.st.com 
 

Estimation of rotation axis 

This step is optional and it is needed only to verify that the rotation axis is vertical or to 
enable the calibration in a tilted plane.  

The rotation axis is the normal to the plane of the accelerometer data (na). The normal is 
computed by the plane fitting function. Three different plane fitting functions are available, 
each with different robustness and complexity trade-off: planefitls (based on Least 
Square), planefiteig (based on Eigen values) and planefiteig_simple (simplified). 

When the rotation axis is vertical, accelerometer data will be clustered around a single 
point, [0, 0, 1]. The result of the plane fitting function should be ignored in this case. In 
general, if the average distance between the barycenter and the data points is less than the 
RMS noise, it means that the rotation axis is vertical. 

When the rotation axis is not vertical, the corresponding de-rotation matrix is computed 
(aderotM) and applied to the accelerometer data (av). One can verify the quality of the 
plane fitting by checking that the de-rotated accelerometer data (avc) is indeed in the 
horizontal plane: the range of Z values should be much less than the range of X and Y 
values. 

2D calibration in the horizontal plane, compensation of installation error 

The first step is to identify the plane corresponding to the magnetometer data by applying 
one of the aforementioned plane fitting functions. As mentioned for the accelerometer data, 
if the average distance of the barycenter and the data points is less than the RMS noise, 
data points are clustered, and the output of the plane fitting cannot be used. 

When the output of the plane fitting functions is deemed reliable, the corresponding de-
rotation matrix is computed (derotM) and applied to the magnetometer data (mv). As 
explained above for the accelerometer, one can verify the quality of the plane fitting by 
checking that the de-rotated magnetometer data (mvc) are indeed in the horizontal plane. 

At this point, if the rotation axis is vertical, the installation error is fully compensated. 

2D calibration in the horizontal plane, compensation of installation error and hard-iron effects 

The second step is to identify the center of the circle/ellipsoid described by the de-rotated 
magnetometer data (mvc). Two different 2D fitting functions are provided with different 
capabilities, robustness and complexity trade-off:  ellipsoid_2D_fit (for circle, ellipse or 
rotated ellipse) and ellipsoid_2D_robust (rotated ellipse only). 

If there is no installation error, the X and Y coordinates of the center of the circle/ellipsoid 
(o2) are the offset to be subtracted. If there is an installation error, or if one wants to 
compute also the Z offset to be subtracted, the reference magnetic vector is needed (mref 
which depends on the parameter “mi”) to compute all the coordinates of the center (o3). 
The three offsets to be subtracted are computed by de-rotating the center (o3): this is the 
estimate of the hard-iron effects (HIE). 

At this point, if the rotation axis is vertical, the installation error as well as the hard-iron 
effects are fully compensated. 



       
 

August 2018 DT0103 Rev 1 7/12 
 

 www.st.com 
 

2D calibration in a tilted plane, compensation of installation error and hard-iron effects 

The third and final step is needed only if the rotation axis is not vertical. In this case the 
magnetometer data should be further de-rotated to be in the correct plane (the same plane 
as the accelerometer data). 

The additional de-rotation will introduce a spurious yaw rotation which must be identified 
and compensated. The Newton method is utilized to search for the correction factor 
(Ycorr). The method has been modified for this specific application in order to complete the 
computation even in case of stationary points and to reject invalid solutions. 

At this point, even if the rotation axis is not vertical, the installation error as well as hard-
iron effects are fully compensated.  

Reference MATLAB code 

Euler, quaternion and rotation matrix conversion functions 
function [euler] = acc2euler(acc) 
  x=acc(:,1); y=acc(:,2); z=acc(:,3); 
  r=atan2(y,z); 
  p=atan(-x/(y.*sin(r) + z.*cos(r))); 
  y=0; 
  euler=[r p y]; 
end 
 
function M = euler2rotM(euler) 
  % North-East-Down reference frame 
  % Roll(phi) Pitch(theta) Yaw(psi), angles in radians 
  phi=euler(1); theta=euler(2); psi=euler(3); 
  m11= cos(theta)*cos(psi); 
  m12= cos(theta)*sin(psi); 
  m13=-sin(theta); 
  m21=sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi); 
  m22=sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi); 
  m23=sin(phi)*cos(theta); 
  m31=cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi); 
  m32=cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi); 
  m33=cos(phi)*cos(theta); 
  M = [m11,m12,m13; m21,m22,m23; m31,m32,m33]; 
end 
 
function euler = rotM2euler(M) 
  m11=M(1,1); m12=M(1,2); m13=M(1,3);  
  m21=M(2,1); m22=M(2,2); m23=M(2,3);  
  m31=M(3,1); m32=M(3,2); m33=M(3,3); 
  m13=min(+1,m13); m13=max(-1,m13); 
  theta=-asin(m13); % alternative value: pi-theta 
  costh=cos(theta);  
  if abs(costh)<0.001, % singularity 
    % psi-phi = atan2(+m21,+m31) or atan2(-m32,+m22) at North theta=+pi/2 
    % psi+phi = atan2(-m21,-m31) or atan2(-m32,+m22) at South theta=-pi/2 
    sgnth=sign(theta);  phi=0; % phi can be anything in -pi..+pi 
    %psi1=sgnth*(phi-atan2(m21*sgnth,m31*sgnth)); 
    %psi2=sgnth*(phi-atan2(-m32,+m22)); 
    psi=-sgnth*atan2(-m32,+m22); % if phi~=0 use one of the formulas above 
  else 
    psi=atan2(m12/costh,m11/costh); 
    phi=atan2(m23/costh,m33/costh); 
  end; 
  euler=[phi theta psi]; % roll pitch yaw 
end 

 
function M = quat2rotM(Q) 
  qw=Q(1); qx=Q(2); qy=Q(3); qz=Q(4); 
  qw2=qw*qw; qx2=qx*qx; qy2=qy*qy; qz2=qz*qz; 
  n=1/(qw2+qx2+qy2+qz2); 
  m11=( qx2 -qy2 -qz2 +qw2)*n; 
  m22=(-qx2 +qy2 -qz2 +qw2)*n; 
  m33=(-qx2 -qy2 +qz2 +qw2)*n; 
  t1=qx*qy; t2=qz*qw; m12=2*(t1+t2)*n; m21=2*(t1-t2)*n; 
  t1=qx*qz; t2=qy*qw; m13=2*(t1-t2)*n; m31=2*(t1+t2)*n; 
  t1=qy*qz; t2=qx*qw; m23=2*(t1+t2)*n; m32=2*(t1-t2)*n; 
  M=[m11 m12 m13; m21 m22 m23;m31 m32 m33]; 
end 



       
 

August 2018 DT0103 Rev 1 8/12 
 

 www.st.com 
 

3D plane fitting functions 
function [n,p] = planefitls(xyz) % xyz: Nx3 matrix, each line is a data point 
  % least square solution, minimize distance along main axis 
  p=mean(xyz,1); % p point in the plane 
  x=xyz(:,1)-p(1); y=xyz(:,2)-p(2); z=xyz(:,3)-p(3);  
  xx=sum(x.*x); yy=sum(y.*y); zz=sum(z.*z); 
  xy=sum(x.*y); xz=sum(x.*z); yz=sum(y.*z);  
  Dx=yy*zz-yz*yz; Dy=xx*zz-xz*xz; Dz=xx*yy-xy*xy; % use largest 
                D=abs(Dx); flag=0; 
  if abs(Dy)>D, D=abs(Dy); flag=1; end; 
  if abs(Dz)>D, D=abs(Dz); flag=2; end; 
  if D==0, n=[0,0,0]; return; end; 
  switch flag 
    case 0, a=1;                 b=(xz*yz-xy*zz)/Dx; c=(xy*yz-xz*yy)/Dx; 
    case 1, a=(yz*xz-xy*zz)/Dy ; b=1;                c=(xy*xz-yz*xx)/Dy; 
    case 2, a=(yz*xy-xz*yy)/Dz;  b=(xz*xy-yz*xx)/Dz; c=1; 
  end 
  n=[a,b,c]./sqrt(a*a+b*b+c*c); % normal to plane 
end 
 
function [n,p,B] = planefiteig(xyz) % xyz: Nx3 matrix, each line is a data point 
  % least square solution, minimize orthonormal distance 
  p=mean(xyz,1); % point in the plane 
  xyz(:,1)=xyz(:,1)-p(1); xyz(:,2)=xyz(:,2)-p(2); xyz(:,3)=xyz(:,3)-p(3); 
  [eigvect,eigval]=eig(xyz' * xyz); % eigen vectors of a 3x3 matrix 
  n=eigvect(:,1)'; % normal to plane 
  B=eigvect(:,2:end)'; % rows are an orthonormal basis for the plane 
end 
 
function [n,p,B] = planefiteig_simple(xyz) % xyz: Nx3 matrix, each line is a data point 
  % least square solution, minimize orthonormal distance 
  p=mean(xyz,1); % point in the plane 
  x=xyz(:,1)-p(1); y=xyz(:,2)-p(2); z=xyz(:,3)-p(3); 
  % XYZ' * XYZ, 3x3 matrix 
  %   x1 x2 ...  * x1 y1 z1 = sum(x2) sum(xy) sum(xz) 
  %   y1 y2 ...    x2 y2 z2   sum(xy) sum(yy) sum(yz) 
  %   z1 z2 ...    :  :  :    sum(xz) sum(yz) sum(z2) 
  xx=sum(x.*x); yy=sum(y.*y); zz=sum(z.*z); 
  xy=sum(x.*y); xz=sum(x.*z); yz=sum(y.*z);    
  [eigvect,eigval]=eig([xx xy xz; xy yy yz; xz yz zz]); % eigen vectors of a 3x3 matrix  
  n=eigvect(:,1)'; % normal to plane 
  B=eigvect(:,2:end)'; % rows are an orthonormal basis for the plane 
end 
 

2D circle/ellipse/rotated ellipse fitting functions 
function [ofs,gain,rotM] = ellipsoid_2D_fit(XY,varargin) 
% Fit an (non)rotated ellipsoid or sphere to a set of xy data points 
% XY: N(rows) x 3(cols), matrix of N data points (x,y) 
% optional flag f, default to 0 (fitting of rotated ellipsoid) 
x=XY(:,1); y=XY(:,2); if nargin>1, f=varargin{1}; else f=0; end; 
if     f==0, D=[x.*x,  y.*y, 2*x.*y, 2*x,2*y]; % any axes (rotated ellipsoid) 
elseif f==1, D=[x.*x,  y.*y,         2*x,2*y]; % XYZ axes (non-rotated ellipsoid) 
elseif f==2, D=[x.*x+y.*y,           2*x,2*y]; % and radius x=y (circle) 
end; 
v = (D'*D)\(D'*ones(length(x),1)); % least square fitting  
if f==0, % rotated ellipsoid 
  A = [ v(1) v(3) v(4); v(3) v(2) v(5); v(4) v(5) -1 ]; 
  ofs=-A(1:2,1:2)\[v(4);v(5)]; % offset is center of ellipsoid 
  Tmtx=eye(3); Tmtx(3,1:2)=ofs'; AT=Tmtx*A*Tmtx'; % ellipsoid translated to (0,0,0) 
  [rotM ev]=eig(AT(1:2,1:2)/-AT(3,3)); % eigenvectors (rotation) and eigenvalues (gain) 
  gain=sqrt(1./diag(ev)); % gain is radius of the ellipsoid  
else % non-rotated ellipsoid 
  if     f==1, v = [ v(1) v(2) 0  v(3) v(4) ]; 
  elseif f==2, v = [ v(1) v(1) 0  v(2) v(3) ]; % sphere 
  end; 
  ofs=-(v(1:2).\v(4:5))'; % offset is center of ellipsoid 
  rotM=eye(2); % eigenvectors (rotation), identity = no rotation 
  g=1+(v(4)^2/v(1)+v(5)^2/v(2)); 
  gain=(sqrt(g./v(1:2)))'; % find radii of the ellipsoid (scale) 
end 
 
function [ofs,gain,rotM] = ellipsoid_2D_fit_robust(XY) 
  % Fit a rotated 2D ellipsoid to a set of xy data points 
  % XY: N(rows) x 2(cols), matrix of N data points (x,y) 
  x=XY(:,1); y=XY(:,2);  
  
  % translate to (0,0), subtract centroid, may increase accuracy 
  mx=mean(x); x=x-mx;  
  my=mean(y); y=y-my; 
   
  D1 = [x.^2, x.*y, y.^2]; D2 = [x, y, ones(size(x))];  
  S1 = D1'*D1; S2 = D1'*D2; S3 = D2'*D2;  
  T = -inv(S3)*S2'; M = S1+S2*T;  
  M = [M(3,:)./2; -M(2,:); M(1,:)./2];  
  [e,eval] = eig(M);  
  c = 4*e(1,:).*e(3,:)-e(2,:).^2;  
  v1 = e(:,find(c>0)); 
  v = [v1; T*v1]; 
   



       
 

August 2018 DT0103 Rev 1 9/12 
 

 www.st.com 
 

  % translate back to centroid, skip if centroid is not subtracted 
  v4 = v(4)-2*v(1)*mx-v(2)*my;  
  v5 = v(5)-2*v(3)*my-v(2)*mx; 
  v6 = v(6)+v(1)*mx^2+v(3)*my^2+v(2)*mx*my-v(4)*mx-v(5)*my; 
  v(4)=v4; v(5)=v5; v(6)=v6; 
   
  ofs =[-2*v(1),-v(2);-v(2 ),-2*v(3)]\[v(4);v(5)]; 
  
  % here we use eig() 
  A=[2*v(1),  v(2),  v(4); ... 
       v(2),2*v(3),  v(5); ... 
       v(4),  v(5),2*v(6)]/v(6); 
  Tmtx=eye(3); Tmtx(3,1:2)=ofs'; AT=Tmtx*A*Tmtx'; 
  [rotM ev]=eig(AT(1:2,1:2)/-AT(3,3));  
  gain=sqrt(1./diag(ev)); 
  
  % alternative: here we do not use eig() 
  %T=A(1:2,1:2)/-AT(3,3); trT=T(1,1)+T(2,2); detT=T(1,1)*T(2,2)-T(1,2)*T(2,1); 
  %ev1=(trT+sqrt(trT^2-4*detT))/2; ev2=(trT-sqrt(trT^2-4*detT))/2; 
  %gain=sqrt(1./[ev2;ev1]); 
  %TT=T-eye(2)*ev1; evect1=TT(1,:)/sqrt(TT(1,1)^2+TT(1,2)^2); 
  %                 evect1=TT(2,:)/sqrt(TT(2,1)^2+TT(2,2)^2); 
  %TT=T-eye(2)*ev2; evect2=TT(1,:)/sqrt(TT(1,1)^2+TT(1,2)^2); 
  %                 evect2=TT(2,:)/sqrt(TT(2,1)^2+TT(2,2)^2); 
  %rotM=[evect1',evect2']; 
end 

Auxiliary scripts 
test_Ycorr.m 
%---- compute only the coefficients of interest in M 
% yawrotM = euler2rotM([0 0 -Ycorr]); % this has a simplified structure 
% M = derotM*yawrotM*aderotM'; % actually only 1st row is needed 
% RPY = rotM2euler(M); % goal is to make the yaw, RPY(3), equal to 0 
  
% see euler2rotM([0 0 -y]) and definition of M above: 
%   cy = cos(-y); sy = sin(-y); % used to compute M coefficients 
%   M11 = cy*(a11*m11+a12*m12) + sy*(a12*m11-a11*m12) + a13*m13; 
%   M12 = cy*(a21*m11+a22*m12) + sy*(a22*m11-a21*m12) + a23*m13;  
%   M13 = cy*(a31*m11+a32*m12) + sy*(a32*m11-a31*m12) + a33*m13; 
  
% see rotM2euler(): 
%   pitch theta = -asin(M13); % pitch is needed to check yaw 
%   yaw   psi   = atan2(M12/cos(theta),M11/cos(theta)); % yaw must be 0 
%   roll  phi   = atan2(M23/cos(theta),M33/cos(theta)); % roll is unnecessary 
  
% for yaw (psi) to be 0:  
% 1) M12 must be 0: used with Newtown method to find roots 
% 2) M11*cos(asin(M13)) must be >0: used to check root validity 
  
m11=derotM(1,1);  m12=derotM(1,2);  m13=derotM(1,3); 
a11=aderotM(1,1); a12=aderotM(1,2); a13=aderotM(1,3); 
a21=aderotM(2,1); a22=aderotM(2,2); a23=aderotM(2,3); 
a31=aderotM(3,1); a32=aderotM(3,2); a33=aderotM(3,3); 
  
%---- Newton method 
done=0; maxiter=20; iter=1; 
c1=(a21*m11+a22*m12); c2=(a22*m11-a21*m12); c3=a23*m13; y=0; % init 
while ~done, 
  y = mod(y,2*pi); if (y>pi), y=y-2*pi; end; 
  cy = cos(y); sy = sin(-y); 
  f  = cy*c1 + sy*c2 + c3; % M12 function 
  fd = sy*c1 - cy*c2;      % M12' function derivative 
  if abs(fd)<1e-2, y=y+pi/2; continue; end; % get out of stationary point 
  yt = y - f/fd; % new root estimate 
  if abs(y-yt)<1e-6, % root candidate: check validity 
    M11 = cy*(a11*m11+a12*m12) + sy*(a12*m11-a11*m12) + a13*m13; 
    M13 = cy*(a31*m11+a32*m12) + sy*(a32*m11-a31*m12) + a33*m13; 
    if M11*cos(asin(M13))<0, y=y+pi; continue; end; % jump to other solution  
    done=1;  
  end; 
  y=yt; iter=iter+1; if iter>maxiter, break; end; 
end; 
Ycorr=y; 

test_plot.m 
hold on; grid on; zoom on; colormap(gray); % NED -> plot(x,-y,-z) 
plot3( av(:,1), -av(:,2), -av(:,3),'d-'); 
plot3( mv(:,1), -mv(:,2), -mv(:,3),'k.-');  
plot3(mve(:,1),-mve(:,2),-mve(:,3),'*-');  
plot3(mvc(:,1),-mvc(:,2),-mvc(:,3),'o-');  
surf(XS,YS,ZS,'FaceAlpha',0.1,'EdgeColor',[0.1 0.1 0.1],'EdgeAlpha',0.1);  
quiver3(0,0,0,na(1),-na(2),-na(3),'b'); % rotax by acc data 
%quiver3(0,0,0,nme(1),-nme(2),-nme(3),'r'); 
legend('acc','mag ref','mag err','mag comp'); xlabel('x'); ylabel('y'); zlabel('z'); 
axis([-lim +lim -lim +lim -lim +lim]); axis equal; 

 



       
 

August 2018 DT0103 Rev 1 10/12 
 

 www.st.com 
 

Main script: algorithm for 2D magnetometer calibration 
test.m 
mi   = 60*pi/180;           % mag field vector inclination w.r.t horizontal plane 
mref = [cos(mi);0;sin(mi)]; % mag field reference vector 
aref = [0;0;1];             % acc gravity reference vector 
  
Rerr = 0; Perr = 0; % default: no installation error 
Rerr = 20; % mag pitch installation error (degrees) 
Perr = 30; % mag roll installation error (degrees) 
RPYerr=[Rerr,Perr,0]*pi/180; % mag installation error, Roll Pitch (Yaw=0) 
rotMerr = euler2rotM(RPYerr); % corresponding rotation matrix, derotM should match this  
%RPYerr2 = rotM2euler(rotMerr)); % reverse computation 
  
HI = [0,0,0]; SI = [1,1,1]; % default: no measurement errors 
HI = [0.1,-0.2,0.3]; % Hard Iron effects (offset), OK if non-zero and unknown 
SI = [0.5, 1.2, 0.9]; % Soft Iron effects (sensitivity), must be unity or known 
  
rotax = [0,0,1]; % default: vertical rotation axis 
rotax = [0,0.9,0.9]; % vector corresponding to the rotation axis 
rotax = rotax./sqrt(sum(rotax.*rotax)); % normalization 
  
N = 50; % points in the simulation 
rv = linspace(0,(360-45)/180*pi,N); % vector of rotation angles 
av = zeros(N,3); % vector of accelerometer data XYZ 
mv = zeros(N,3); % vector of magnetometer data XYZ 
mve = mv; % mag data with installation and measurement error 
  
% simulation of calibration with rotation around rotax 
for i = 1 : N, 
  r2 = rv(i)/2; % current rotation angle 
  rotM  = quat2rotM([cos(r2), sin(r2).*rotax]); % rotation matrix 
  av(i,:) = rotM*aref; % acc  
  mv(i,:) = rotM*mref; % mag without installation error 
  mve(i,:) = (rotMerr*rotM )*mref; % mag with installation error 
  mve(i,:) = (mve(i,:).*SI)+HI; % and measurement error (HI/SI) 
end; 
  
% add some Gaussian noise 
aRMS = 0; mRMS = 0; % default: 0 RMS noise 
aRMS = 0.010/1.0; % 10mg RMS noise / 1g gravity vector 
mRMS = 0.005/0.5; % 5mGa RMS noise / 500mGa earth mag field vector 
av  = av  + randn(size(av ))*aRMS;  
mv  = mv  + randn(size(mv ))*mRMS; 
mve = mve + randn(size(mve))*mRMS; 
  
% estimation of rotation axis, should be vertical 
avm = ones(N,1)*mean(av,1); % convenient matrix from the center of data points  
avmd = sum(sqrt(sum((av-avm).^2,2)))/N; % planefit quality ~ avg distance w.r.t. center 
[na,pa] = planefitls(av); % planefit[ls/eig/eig_simple] 
if dot(na,[0,0,1])<0, na=-na; end; % choose min rotation w.r.t. vertical 
if avmd<=(6*aRMS), na=[0,0,1]; end; % cluster of points indicates rotax is vertical 
RPYrotax = acc2euler(na); % when rotax is not vertical Yaw does matter but it is not known 
%RPYrotax(3) = Ycorr; % correction yaw is found in the final step 
aderotM = euler2rotM(RPYrotax); % identity if rotax is vertical 
avc = av*aderotM; % derotate acc data to see if it is in the horiz plane 
avcX=max(avc(:,1))-min(avc(:,1)); % check quality of derotation to horiz plane 
avcY=max(avc(:,2))-min(avc(:,2)); % avcZ must be much less than avcX,avcY 
avcZ=max(avc(:,3))-min(avc(:,3)); % avcZ ~ 0 if there is no noise 
  
% estimation and compensation of inst.err, SI must be unity or known 
mvem = ones(N,1)*mean(mve,1); % convenient matrix from the center of data points  
mvemd = sum(sqrt(sum((mve-mvem).^2,2)))/N; % sum of distances w.r.t. center 
[nme,pme] = planefitls(mve); % planefit[ls/eig/eig_simple] 
if dot(nme,[0,0,1])<0, nme=-nme; end; % choose min rotation w.r.t. vertical 
RPYerrE = acc2euler(nme.*SI); % this is the estimated installation error  
derotM = euler2rotM(RPYerrE); % corresponding derotation matrix 
SIc = ones(N,1)*(1./SI); % convenient matrix for SI compensation 
%mvc = mve*derotM; % compensation of inst.err only, when SI is unity 
mvc = ((mve.*SIc)*derotM); % compensation of SI and inst.err, vert rotax, step (a) 
mvcX=max(mvc(:,1))-min(mvc(:,1)); % check quality of derotation to horiz plane 
mvcY=max(mvc(:,2))-min(mvc(:,2)); % mvcZ must be much less than mvcX,mvcY 
mvcZ=max(mvc(:,3))-min(mvc(:,3)); % mvcZ ~ 0 if there is no noise 
  
% estimation and compensation of HI, to be done after inst.err compensation 
[o2,g2,rotM2] = ellipsoid_2D_fit(mvc,0); % 2=circle, 1=ellipse, 0=rotated ellipse 
%[o2,g2,rotM2] = ellipsoid_2Dfit_robust(mvc); % alternative for rotated ellipse 
mref2 = aderotM' * mref; % compensate for non-vertical rotation axis, inv(rotM)=rotM' 
o3  = [o2;mean(mvc(:,3))-mref2(3)]; % this is the point corresponding to (0,0,0) 
HIE = (derotM*o3)'.*SI; % this is the estimated HI, SI must unity or known 
HIc = (ones(N,1)*HIE); % convenient matrix for HI compensation 
mvc = ((mve-HIc).*SIc)*derotM; % compensation of HI/SI and inst.err, vert rotax, opt step (b) 
  
% finalize compensation, to be done after (a) or (a)+(b) when rotax is not vertical  
test_Ycorr; % search for Ycorr, to be done when rotax is not vertical 
yawrotM = euler2rotM([0 0 -Ycorr]); % this will make RPYerr_final(3)=0 
derotM = derotM * yawrotM * aderotM'; % compensate for non-vertical rotation axis 
RPYerrE = rotM2euler(derotM); % recompute installation error 
mvc = ((mve-HIc).*SIc)*derotM; % compensation of HI/SI and inst.err, any rotax 
  
% plot section: 3D and 2D views 
[XS,YS,ZS]=sphere(20); % reference sphere for XYZ data plot 



       
 

August 2018 DT0103 Rev 1 11/12 
 

 www.st.com 
 

lim = 1.3; % range of 3D plot, used in data plot 
figure;  
subplot(2,2,1); test_plot; view(210,30); title('3D view'); 
subplot(2,2,2); test_plot; view(0,0); title('XZ view'); 
subplot(2,2,3); test_plot; view(90,0); title('YZ view'); 
subplot(2,2,4); test_plot; view(0,90); title('XY view'); 
  
% print section 
fprintf('reliability of acc data for planefit: %.2g >= 6*RMS: %.2g, ratio 
%.2g\n',avmd,6*aRMS,avmd/(6*aRMS)); 
fprintf('quality of rotax estim. from acc derotation: Zdiff %.2g << Xdiff,Ydiff %.2g %.2g, ratio 
%.2g %.2g\n',avcZ,avcX,avcY,avcX/avcZ,avcY/avcZ); 
fprintf('rotation axis                : %.3f %.3f %.3f\n',rotax(1),rotax(2),rotax(3));     
fprintf('rotation axis estim. from acc: %.3f %.3f %.3f\n',na(1),na(2),na(3)); 
fprintf('\n'); 
  
fprintf('reliability of mag data for planefit: %.2g >= 6*RMS: %.2g, ratio 
%.2g\n',mvemd,6*mRMS,mvemd/(6*mRMS)); 
fprintf('quality of inst.err estim. from mag derotation: Zdiff %.2g << Xdiff,Ydiff %.2g %.2g, 
ratio %.2g %.2g\n',mvcZ,mvcX,mvcY,mvcX/mvcZ,mvcY/mvcZ); 
fprintf('yaw derotation correction (function of mag and acc planes): %.4f\n',Ycorr); 
fprintf('inst.err true (RPY in rad) %.4f %.4f %.4f\n',RPYerr(1),RPYerr(2),RPYerr(3)); 
fprintf('inst.err estimated (in rad) %.4f %.4f %.4f\n',RPYerrE(1),RPYerrE(2),RPYerrE(3)); 
fprintf('\n'); 
  
fprintf('Hard Iron offset error  %.4f %.4f %.4f\n',HI(1),HI(2),HI(3)); 
fprintf('Hard Iron estimated     %.4f %.4f %.4f\n',HIE(1),HIE(2),HIE(3)); 
fprintf('Soft Iron gain error  %.4f %.4f %.4f\n',SI(1),SI(2),SI(3)); 

Support material 
Related design support material 

Software expansion, X-CUBE-MEMS1, Sensor and motion algorithm software expansion for 
STM32Cube 

Software function pack, FP-SNS-MOTENV1, STM32 ODE function pack for IoT node with BLE 
connectivity and environmental and motion sensors 

Software function pack, FP-SNS-ALLMEMS1, STM32 ODE function pack for IoT node with BLE 
connectivity, digital microphone, environmental and motion sensors 

Evaluation kit, STEVAL-STLKT01V1, SensorTile development kit 

Documentation 

Design Tip, DT0053, 6-point tumble sensor calibration 

Design Tip, DT0058, Computing tilt measurement and tilt-compensated eCompass 

Design Tip, DT0059, Ellipsoid or sphere fitting for sensor calibration 

Design Tip, DT0060, Exploiting the gyroscope to update tile measure and eCompass 

Design Tip, DT0076, Compensating for accelerometer installation error: zeroing pitch and roll for a 
reference orientation 

Revision history 
Date Version Changes 

28-Aug-2018 1 Initial release 

 

 

 

 

 



       
 

August 2018 DT0103 Rev 1 12/12 
 

 www.st.com 
 

 

 

 

 

 

 

 

 

   
IMPORTANT NOTICE – PLEASE READ CAREFULLY 

 

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, 
modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should 
obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and 
conditions of sale in place at the time of order acknowledgement. 

 

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for 
application assistance or the design of Purchasers’ products. 

 

No license, express or implied, to any intellectual property right is granted by ST herein.  

 

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for 
such product. 

 

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. 
 

 

Information in this document supersedes and replaces information previously supplied in any prior versions of this document. 

 

© 2018 STMicroelectronics – All rights reserved 

 


	Purpose and benefits
	Introduction
	What happens in the ideal reference case
	What happens in presence of installation error and hard-iron effects
	Generation of simulated data and performance verification

	Description of 2D calibration and compensation
	Estimation of rotation axis
	2D calibration in the horizontal plane, compensation of installation error
	2D calibration in the horizontal plane, compensation of installation error and hard-iron effects
	2D calibration in a tilted plane, compensation of installation error and hard-iron effects

	Reference MATLAB code
	Euler, quaternion and rotation matrix conversion functions
	3D plane fitting functions
	2D circle/ellipse/rotated ellipse fitting functions
	Auxiliary scripts
	Main script: algorithm for 2D magnetometer calibration

	Support material
	Revision history

